在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足:2Sn2=an(2Sn-1).(Ⅰ)求证:数列{1Sn}是等差数列,
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足:2Sn2=an(2Sn-1).(Ⅰ)求证:数列{1Sn}是等差数列,并用n表示Sn;(Ⅱ)令bn=Sn2n+1...
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足:2Sn2=an(2Sn-1).(Ⅰ)求证:数列{1Sn}是等差数列,并用n表示Sn;(Ⅱ)令bn=Sn2n+1,数列{bn}的前n项和为Tn.求使得2Tn(2n+1)≤m(n2+3)对所有n∈N*都成立的实数m的取值范围.
展开
2个回答
展开全部
解答:(Ⅰ)证明:当n≥2时,其前n项和Sn满足:2Sn2=an(2Sn-1).
∴2
=(Sn?Sn?1)(2Sn?1),
化为
?
=2,
∴数列{
}是等差数列,
∴
=1+2(n?1)=2n-1,
∴Sn=
.
(II)bn=
=
=
(
?
),
∴数列{bn}的前n项和为Tn=
[(1?
)+(
?
)+…+(
?
)]
=
(1?
)=
.
∴2Tn(2n+1)≤m(n2+3)化为m≥
,
∵
=
<
=
.
∴m≥
.
使得2Tn(2n+1)≤m(n2+3)对所有n∈N*都成立的实数m的取值范围是[
,+∞).
∴2
S | 2 n |
化为
1 |
Sn |
1 |
Sn?1 |
∴数列{
1 |
Sn |
∴
1 |
Sn |
∴Sn=
1 |
2n?1 |
(II)bn=
Sn |
2n+1 |
1 |
(2n?1)(2n+1) |
1 |
2 |
1 |
2n?1 |
1 |
2n+1 |
∴数列{bn}的前n项和为Tn=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n?1 |
1 |
2n+1 |
=
1 |
2 |
1 |
2n+1 |
n |
2n+1 |
∴2Tn(2n+1)≤m(n2+3)化为m≥
2n |
n2+3 |
∵
2n |
n2+3 |
2 | ||
n+
|
2 | ||
2+
|
4 |
7 |
∴m≥
4 |
7 |
使得2Tn(2n+1)≤m(n2+3)对所有n∈N*都成立的实数m的取值范围是[
4 |
7 |
展开全部
(Sn)²=[Sn-S(n-1)](Sn-1/2)
(Sn)²=(Sn)²-Sn/2-SnS(n-1)+S(n-1)/2
Sn+2SnS(n-1)-S(n-1)=0
S(n-1)-Sn=2SnS(n-1)
两边除以SnS(n-1)
1/Sn-1/S(n-1)=2
1/Sn等差,d=2
S1=a1=1
1/Sn=1/S1+2(n-1)=2n-1
Sn=1/(2n-1)
bn=1//[(2n-1)(2n+1)]
=1/2*2[(2n-1)(2n+1)]
=1/2*[(2n+1)-(2n+1)]/[(2n-1)(2n+1)]
=1/2*{(2n+1)/[(2n-1)(2n+1)]-(2n+1)/[(2n-1)(2n+1)]}
=1/2*[1/[(2n-1)-1/(2n+1)]
所以Tn=1/2*(1-1/3+1/3-1/5+1/5-1/7+……+1/[(2n-1)-1/(2n+1)]
=1/2*(1-1/(2n+1)]
=n/(2n+1)
(Sn)²=(Sn)²-Sn/2-SnS(n-1)+S(n-1)/2
Sn+2SnS(n-1)-S(n-1)=0
S(n-1)-Sn=2SnS(n-1)
两边除以SnS(n-1)
1/Sn-1/S(n-1)=2
1/Sn等差,d=2
S1=a1=1
1/Sn=1/S1+2(n-1)=2n-1
Sn=1/(2n-1)
bn=1//[(2n-1)(2n+1)]
=1/2*2[(2n-1)(2n+1)]
=1/2*[(2n+1)-(2n+1)]/[(2n-1)(2n+1)]
=1/2*{(2n+1)/[(2n-1)(2n+1)]-(2n+1)/[(2n-1)(2n+1)]}
=1/2*[1/[(2n-1)-1/(2n+1)]
所以Tn=1/2*(1-1/3+1/3-1/5+1/5-1/7+……+1/[(2n-1)-1/(2n+1)]
=1/2*(1-1/(2n+1)]
=n/(2n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询