如图,在Rt△ABC中,<BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角
如图,在Rt△ABC中,<BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角形斜边的两个端点分别与A,D重合,连接BE,EC。...
如图,在Rt△ABC中,<BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角形斜边的两个端点分别与A,D重合,连接BE,EC。试猜想线段BE和EC的数量位置关系,并证明。
展开
1个回答
展开全部
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询