已知:数列{a n }的前n项和为S n ,满足S n =2a n -2n(n∈N*)(1)求数列{a n }的通项公式a n ;(2)
已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*)(1)求数列{an}的通项公式an;(2)若数列{bn}满足bn=log2(an+2),而Tn为数列...
已知:数列{a n }的前n项和为S n ,满足S n =2a n -2n(n∈N*)(1)求数列{a n }的通项公式a n ;(2)若数列{b n }满足b n =log 2 (a n +2),而T n 为数列 { b n a n +2 } 的前n项和,求T n .
展开
(1)当n∈N*时,S n =2a n -2n,①则当n≥2,n∈N*时,S n-1 =2a n-1 -2(n-1).② ①-②,得a n =2a n -2a n-1 -2,即a n =2a n-1 +2,∴a n +2=2(a n-1 +2)∴ =2. 当n=1 时,S 1 =2a 1 -2,则a 1 =2,当n=2时,a 2 =6,∴{a n +2}是以a 1 +2为首项,以2为公比的等比数列. ∴a n +2=4?2 n-1 ,∴a n =2 n+1 -2,(7分) (2)由b n =log 2 (a n +2)=log 2 2 n+1 =n+1,得 = , 则T n = + +…+ ,③ T n = +…+ + ,④ ③-④,得 T n = + + +…+ + = + - = + - - = - ∴T n = - (14分) |
收起
为你推荐: