(2013·天津模拟)已知数列{a n }的前n项和为S n ,且S n =2a n -2(n∈N * ),数列{b n }满足b 1 =1,
(2013·天津模拟)已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上....
(2013·天津模拟)已知数列{a n }的前n项和为S n ,且S n =2a n -2(n∈N * ),数列{b n }满足b 1 =1,且点P(b n ,b n +1 )(n∈N * )在直线y=x+2上.(1)求数列{a n },{b n }的通项公式.(2)求数列{a n ·b n }的前n项和D n .(3)设c n =a n ·sin 2 -b n ·cos 2 (n∈N * ),求数列{c n }的前2n项和T 2n .
展开
电波1525
2014-11-19
·
TA获得超过134个赞
知道答主
回答量:124
采纳率:50%
帮助的人:130万
关注
(1)a n =2a n -1 (n≥2) b n =2n-1 (2)D n =(2n-3)2 n +1 +6 (3) -2n 2 -n |
(1)当n=1时,a 1 =2, 当n≥2时,a n =S n -S n -1 =2a n -2a n -1 , 所以a n =2a n -1 (n≥2),所以{a n }是等比数列,公比为2,首项a 1 =2,所以a n =2 n , 又点P(b n ,b n +1 )(n∈N * )在直线y=x+2上,所以b n +1 =b n +2, 所以{b n }是等差数列,公差为2,首项b 1 =1,所以b n =2n-1. (2)由(1)知a n ·b n =(2n-1)×2 n , 所以D n =1×2 1 +3×2 2 +5×2 3 +7×2 4 +…+(2n-3)×2 n -1 +(2n-1)×2 n ,① 2D n =1×2 2 +3×2 3 +5×2 4 +7×2 5 +…+(2n-3)×2 n +(2n-1)×2 n +1 .② ①-②得-D n =1×2 1 +2×2 2 +2×2 3 +2×2 4 +…+2×2 n -(2n-1)×2 n +1 =2+2× -(2n-1)×2 n +1 =(3-2n)2 n +1 -6, 则D n =(2n-3)2 n +1 +6. (3)c n = , T 2n =(a 1 +a 3 +…+a 2n -1 )-(b 2 +b 4 +…+b 2n ) =2+2 3 +…+2 2n -1 -[3+7+…+(4n-1)]= -2n 2 -n. |
收起
为你推荐: