如图,在矩形 ABCD 中, AB =3, BC =4.动点 P 从点 A 出发沿 AC 向终点 C 运动,同时动点 Q 从点 B 出
如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P、Q运动速...
如图,在矩形 ABCD 中, AB =3, BC =4.动点 P 从点 A 出发沿 AC 向终点 C 运动,同时动点 Q 从点 B 出发沿 BA 向点 A 运动,到达 A 点后立刻以原来的速度沿 AB 返回.点 P 、 Q 运动速度均为每秒1个单位长度,当点 P 到达点 C 时停止运动,点 Q 也同时停止.连接 PQ ,设运动时间为 t ( t >0)秒. (1)求线段 AC 的长度;(2)当点 Q 从点 B 向点 A 运动时(未到达 A 点),求△ APQ 的面积 S 关于 t 的函数关系式,并写出 t 的取值范围;(3)伴随着 P 、 Q 两点的运动,线段 PQ 的垂直平分线为 l :①当 l 经过点 A 时,射线 QP 交 AD 于点 E ,求 AE 的长;②当 l 经过点 B 时,求 t 的值.
展开
书巧风RH
2014-10-07
·
TA获得超过216个赞
知道答主
回答量:197
采纳率:50%
帮助的人:144万
关注
试题分析:(1)在矩形 ABCD 中, (2)过点 P 作 PH ⊥ AB 于点 H , AP=t , AQ = 3- t , 由△ AHP ∽△ ABC ,得 ,∴ PH= , , . (3) ①如图②,线段 PQ 的垂直平分线为 l 经过点 A ,则 AP=AQ , 即3 -t=t ,∴ t= 1.5,∴ AP=AQ= 1.5, 延长 QP 交 AD 于点 E ,过点 Q 作 QO ∥ AD 交 AC 于点 O , 则 , ,∴ PO=AO -AP= 1. 由△ APE ∽△ OPQ ,得 . ②(ⅰ)如图③,当点 Q 从 B 向 A 运动时 l 经过点 B , BQ = CP = AP = t ,∠ QBP =∠ QAP ∵∠ QBP +∠ PBC =90°,∠ QAP +∠ PCB =90° ∴∠ PBC =∠ PCB CP = BP = AP = t ∴ CP = AP = AC = ×5=2.5 ∴ t =2.5. (ⅱ)如图④,当点 Q 从 A 向 B 运动时 l 经过点 B , BP = BQ =3-( t- 3)=6- t , AP = t , PC = 5-t , 过点 P 作 PG ⊥ CB 于点 G 由△ PGC ∽△ ABC , 得 , BG =4- = 由勾股定理得 ,即 ,解得 . 点评:本题考查矩形,相似三角形,要求考生掌握矩形的性质,相似三角形的判定方法,会判定两个三角形相似 |
收起
为你推荐: