求a,b为何值时,点p(1,3)为曲线y=ax^3+bx^2的拐点。(具体步骤)
1个回答
展开全部
P(1,3)为y=ax^3+bx^2的拐点
3=a×1^3+b×1^2
a+b=3
b=3-a
y=ax^3+(3-a)x^2
y'=3ax^2+2(3-a)x
=3ax^2+(6-2a)x
y"=6ax+6-2a
=2(3ax+3-a)
y"=0
2(3ax+3-a)=0
3ax+3-a=0
3ax=a-3
x=1/3-1/a
∵P(1,3)是拐点
∴x=1
1/3-1/a=1
1/3-1=1/a
-2/3=1/a
a=-3/2
b=3-a
=3-(-3/2)
=3+3/2
=9/2
3=a×1^3+b×1^2
a+b=3
b=3-a
y=ax^3+(3-a)x^2
y'=3ax^2+2(3-a)x
=3ax^2+(6-2a)x
y"=6ax+6-2a
=2(3ax+3-a)
y"=0
2(3ax+3-a)=0
3ax+3-a=0
3ax=a-3
x=1/3-1/a
∵P(1,3)是拐点
∴x=1
1/3-1/a=1
1/3-1=1/a
-2/3=1/a
a=-3/2
b=3-a
=3-(-3/2)
=3+3/2
=9/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询