正有理数和负有理数统称有理数是对的吗
正有理数和负有理数统称有理数是不对的,还有0。
有理数为整数(正整数、0、负整数)和分数的统称 。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
扩展资料:
有理数运算定律
一、加法运算律:
1、加法交换律:两个数相加,交换加数的位置,和不变,即 。
2、加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 。
二、减法运算律:减去一个数,等于加上这个数的相反数。即: 。
三、乘法运算律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变,即 。
2、乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 。
3、乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加。