大一高等数学微分方程求解
2个回答
展开全部
若是 e^n, 则化为 y' - xy = xe^n 是一阶线性微分方程
y = e^(∫xdx) [ C + e^n∫xe^(∫-xdx)dx ]
= e^(x^2/2) [ C + e^n∫xe^(-x^2/2)dx ]
= e^(x^2/2) [ C - e^n∫e^(-x^2/2)d(-x^2/2) ]
= e^(x^2/2) [ C - e^ne^(-x^2/2) ]
= Ce^(x^2/2) - e^n
若是 e^x, 则化为 y' - xy = xe^x 是一阶线性微分方程
y = e^(∫xdx) [ C + ∫xe^xe^(∫-xdx)dx ]
= e^(x^2/2) [ C + ∫xe^xe^(-x^2/2)dx ]
= e^(x^2/2) [ C - ∫e^xe^(-x^2/2)d(-x^2/2) ]
= e^(x^2/2) [ C - ∫e^xde^(-x^2/2) ]
= e^(x^2/2) [ C - e^(x-x^2/2) + ∫e^(-x^2/2)e^xdx ]
不能用初等函数表示
y = e^(∫xdx) [ C + e^n∫xe^(∫-xdx)dx ]
= e^(x^2/2) [ C + e^n∫xe^(-x^2/2)dx ]
= e^(x^2/2) [ C - e^n∫e^(-x^2/2)d(-x^2/2) ]
= e^(x^2/2) [ C - e^ne^(-x^2/2) ]
= Ce^(x^2/2) - e^n
若是 e^x, 则化为 y' - xy = xe^x 是一阶线性微分方程
y = e^(∫xdx) [ C + ∫xe^xe^(∫-xdx)dx ]
= e^(x^2/2) [ C + ∫xe^xe^(-x^2/2)dx ]
= e^(x^2/2) [ C - ∫e^xe^(-x^2/2)d(-x^2/2) ]
= e^(x^2/2) [ C - ∫e^xde^(-x^2/2) ]
= e^(x^2/2) [ C - e^(x-x^2/2) + ∫e^(-x^2/2)e^xdx ]
不能用初等函数表示
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询