高数 不定积分题
1个回答
展开全部
令u=tan(x/2),则sinx=2u/(1+u^2),tanx=2u/(1-u^2),dx=2du/(1+u^2)
原搭前漏式=∫[2du/(1+u^2)]/[2u/(1+u^2)+2u/知烂(1-u^2)]
=∫[(1-u^2)du]/悔伍[u(1-u^2)+u(1+u^2)]
=∫(1-u^2)/(2u)du
=(1/2)*∫(1/u-u)du
=(1/2)*ln|u|-(1/4)*u^2+C
=(1/2)*lntan(x/2)-(1/4)*tan^2(x/2)+C,其中C是任意常数
原搭前漏式=∫[2du/(1+u^2)]/[2u/(1+u^2)+2u/知烂(1-u^2)]
=∫[(1-u^2)du]/悔伍[u(1-u^2)+u(1+u^2)]
=∫(1-u^2)/(2u)du
=(1/2)*∫(1/u-u)du
=(1/2)*ln|u|-(1/4)*u^2+C
=(1/2)*lntan(x/2)-(1/4)*tan^2(x/2)+C,其中C是任意常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询