非齐次线性方程组的特解是什么?
非齐次线性方程组Ax=b的特解就是满足方程组Ax=b的一个解向量。
非齐次线性方程组Ax=b解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)
非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。
扩展资料:
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于
参考资料来源:百度百科-非齐次线性方程组
非齐次线性方程组Ax=b的特解就是满足方程组Ax=b的一个解向量。
非齐次线性方程组解的判别:
如果系数矩阵的秩小于增广矩阵的秩,方程组无解;如果系数矩阵的秩等于增广矩阵的秩,方程组有解。在有解的情况下,如果系数矩阵的秩等于未知数的个数,非齐次线性方程组有唯一解。
如果系数矩阵的秩小于未知数的个数,非齐次线性方程组有无穷多解,如果有无穷多解,先求所对应齐次线性方程组的基础解系,再求出非齐次线性方程组的一个特解。
由此可知:如果非齐次线性方程组有无穷多解,则其对应的齐次线性方程组一定有非零解,且非齐次线性方程组的全部解(通解)可表示为:对应齐次线性方程组的通解+非齐次线性方程组的特解。
扩展资料
一、性质:
1、如果非齐次线性方程组有两个特解的话,那么这两个特解相减后就是齐次线性方程组的解。
2、非齐次线性方程组特解+齐次线性方程组通解=非齐次线性方程组通解。
二、非齐次线性方程组Ax=b的求解步骤:
1、对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
2、若R(A)=R(B),则进一步将B化为行最简形。
3、设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于
即可写出含n-r个参数的通解。
参考资料来源:百度百科-非齐次线性方程组
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于
,即可写出含n-r个参数的通解。
常数项不全为零的线性方程组称为非齐次线性方程组。
非齐次线性方程组的表达式为:Ax=b
非齐次线性方程组
有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。
非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)