如果abc=1,试求a/(ab+a+1)+b/(bc+b+1)+c/(ca+c+1)的值

 我来答
百度网友aba7e1ea1a4
2019-04-20 · TA获得超过3775个赞
知道大有可为答主
回答量:3207
采纳率:32%
帮助的人:166万
展开全部
abc=1,则a=1/bc,
则a/(ab+a+1)=1/(bc+b+1),
所以a/(ab+a+1)+b/(bc+b+1)=1/(bc+b+1)+b/(bc+b+1)
=(1+b)/(bc+b+c);
而另一个,c/(ca+c+1)可将c=1/ab代入,
则等于c/(ca+c+1)=1/(ab+a+1),
再将a=1/bc代入上式,则c/(ca+c+1)=bc/(bc+b+1),
所以,全式=1/(bc+b+1)+b/(bc+b+1)+bc/(bc+b+1)
最后=1+b+bc/bc+b+1=1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式