线性代数里向量组A和向量组B等价的充要条件的证明没看懂
1个回答
展开全部
首先,(A,B)表示矩阵A写在左边矩阵B写在右边,(B,A)表示矩阵B写在左边矩阵A写在右边。
其次,虽然行中数值顺序有变化,但是这个矩阵的每一列的数值从上至下顺序未变。
最后,用初等列变换求矩阵的秩,可以改变每一列的顺序,矩阵的秩不变。
综上可知,R(A,B)=R(B,A)
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。
扩展资料
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询