【高中物理】过山车问题

游乐场的过山车可以抽象成如图所示的模型:圆弧轨道的下端与圆轨道相接于M点,使一质量为m的小球从弧形轨道上距M点竖直高度为h处滚下,小球进入半径为R的圆轨道下端后沿该圆轨道... 游乐场的过山车可以抽象成如图所示的模型:圆弧轨道的下端与圆轨道相接于M点,使一质量为m的小球从弧形轨道上距M点竖直高度为h处滚下,小球进入半径为R的圆轨道下端后沿该圆轨道运动。实验发现,只要h大于一定值,小球就可以顺利通过圆轨道的最高点N,不考虑摩擦等阻力。
(1)若h=5R,求小球通过M点时对轨道的压力;
(2)若改变h的大小,小球通过最高点时的动能Ek也随之改变,试通过计算在Ek-h图中作出Ek随h变化的关系图像。

最好有过程,思路也可以,谢谢啦!
展开
谭银光
2010-02-19 · TA获得超过11.1万个赞
知道大有可为答主
回答量:1.8万
采纳率:13%
帮助的人:9784万
展开全部
利用机械能守恒定律求解得
mg*5R=1/2mv^2
在M点,有N-mg=mv^2/R
得N=11mg
根据牛顿第三定律知,小球通过M点时对轨道的压力大小为11mg,方向竖直向下
只要小车在最高点满足 mv^2/R=mg ,v=根号(gR)
用机械能守恒定律求解得 mgh=1/2mv^2+mg(2R),
求得h=5R/2,此时在最高点的动能为mgR/2
即h至少为5R/2,在最高点的动能至少为mgR/2
机械能守恒定律有
Ek随h变化的关系为Ek随=mg(h-2R)=mgh-2mgR
鱼好成芳茵
2020-03-07 · TA获得超过3758个赞
知道大有可为答主
回答量:3162
采纳率:32%
帮助的人:165万
展开全部
只要小车在最高点受力满足
F(向心力)=mv^2/R=mg
,v=(gR)^(1/2)
此时,既可以利用机械能守恒定律求解得
mgh=1/2mv^2+mg(2R),
代入v的值就可以求得。计算我就省了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
宣腾茆问萍
2019-04-09 · TA获得超过3822个赞
知道大有可为答主
回答量:3093
采纳率:31%
帮助的人:202万
展开全部
要使小球到最高点条件是在最高点重力完全提供向心力
mg=(v*v)*m/r解得v=根号gr
再用能量守恒定律
mgh=2*mgr+(1/2)m(v*v)
解出h
就好了
你先试算一下看对不对
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式