已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线 y=

已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=kx(x>0)经过D点,交BC的延长线于E点,且OB?AC=1... 已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线 y= k x (x>0)经过D点,交BC的延长线于E点,且OB?AC=160,有下列四个结论:①双曲线的解析式为 y= 20 x (x>0);②E点的坐标是(4,8);③sin∠COA= 4 5 ;④AC+OB= 12 5 ,其中正确的结论有(  ) A.1个 B.2个 C.3个 D.4个 展开
 我来答
漳躡嫢
推荐于2016-12-01 · 超过57用户采纳过TA的回答
知道答主
回答量:111
采纳率:50%
帮助的人:108万
展开全部
过点C作CF⊥x轴于点F,
∵OB?AC=160,A点的坐标为(10,0),
∴OA?CF=
1
2
OB?AC=
1
2
×160=80,菱形OABC的边长为10,
∴CF=
80
OA
=
80
10
=8,
在Rt△OCF中,
∵OC=10,CF=8,
∴OF=
OC 2 - CF 2
=
10 2 - 8 2
=6,
∴C(6,8),
∵点D时线段AC的中点,
∴D点坐标为(
10+6
2
8
2
),即(8,4),
∵双曲线 y=
k
x
(x>0)经过D点,
∴4=
k
8
,即k=32,
∴双曲线的解析式为:y=
32
x
(x>0),故①错误;
∵CF=8,
∴直线CB的解析式为y=8,
y=
32
x
y=8
,解得
x=4
y=8

∴E点坐标为(4,8),故②正确;
∵CF=8,OC=10,
∴sin∠COA=
CF
OC
=
8
10
=
4
5
,故③正确;
∵A(10,0),C(6,8),
∴AC=
(10-6 ) 2 +(0-8 ) 2
=4
5

∵OB?AC=160,
∴OB=
160
AC
=
160
4
5
=8
5

∴AC+OB=4
5
+8
5
=12
5
,故④正确.
故选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式