定积分前面的那个dx分之d是什么意思,具体怎么推出来的?

 我来答
社会风土民情
高粉答主

2021-08-06 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3570
采纳率:100%
帮助的人:89万
展开全部

d/dx就是对后面式子中的x求导的意思。

dx 是微分符号。通常把自变量x的增量Δx称为自变量的微分,记作 dx,即 dx=Δx。于是函数y= f(x) 的微分又可记作 dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

d(5x+11) 可以理解为自变量 (5x+11) 的微分,d(5x+11) = 5dx,所以 dx = 1/5 d(5x+11)。

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

帐号已注销
2020-12-28 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

d/dx就是对后面式子中的x求导的意思。

dx 是微分符号。通常把自变量x的增量Δx称为自变量的微分,记作 dx,即 dx=Δx。于是函数y= f(x) 的微分又可记作 dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

d(5x+11) 可以理解为自变量 (5x+11) 的微分,d(5x+11) = 5dx,所以 dx = 1/5 d(5x+11)。

扩展资料:

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

参考资料来源:百度百科-定积分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
旅游小达人Ky
高粉答主

2020-12-30 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1893
采纳率:100%
帮助的人:37.6万
展开全部

d/dx就是对后面式子中的x求导的意思。

dx 是微分符号。通常把自变量x的增量Δx称为自变量的微分,记作 dx,即 dx=Δx。于是函数y= f(x) 的微分又可记作 dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

d(5x+11) 可以理解为自变量 (5x+11) 的微分,d(5x+11) = 5dx,所以 dx = 1/5 d(5x+11)。

扩展资料

定积分的计算一般思路与步骤

1∶分析积分区间是否关于原点对称,即为[-a,a],如果是,则考虑被积函数的整体或者经过加减拆项后的部分是否具有奇偶性,如果有,则考虑使用“偶倍奇零”性质简化定积分计算。

2∶考虑被积函数是否具有周期性,如果是周期函数,考虑积分区间的长度是否为周期的整数倍,如果是,则利用周期函数的定积分在任—周期长度的区间上的定积分相等的结论简化积分计算。

3:考察被积函数是否可以转换为“反对幂指三”五类基本函数中两个类型函数的乘积,或者是否包含有正整数n参数,或者包含有抽象函数的导数乘项,如果是,可考虑使用定积分的分部积分法计算定积分。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-12-03
展开全部
别钻牛角尖,d/dx就是对后面式子中的x求导的意思
追答
之前我也很在乎证明过程,但一口吃不成胖子,做题多了,你就明白了,只看证明过程,太抽象,不好理解
追问
考前一个月冲刺中~重头开始看书啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-12-03
展开全部

 

追问
就是对这个定积分求导的意思?
追答
是的
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式