如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边三角形ACD、等边三角形ABE.已知∠BAC=30°,EF⊥AB,

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边三角形ACD、等边三角形ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连结DF.①试说明AC=EF;②求证:... 如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边三角形ACD、等边三角形ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连结DF. ①试说明AC=EF;②求证:四边形ADFE是平行四边形. 展开
 我来答
淦青文3C
推荐于2016-11-27 · TA获得超过167个赞
知道答主
回答量:129
采纳率:83%
帮助的人:47.9万
展开全部
见解析

本题考查的是全等三角形的判定和性质,平行四边形的判定
①由△ABE是等边三角形可得AB=AE,∠BAE=60°,在Rt△ABC中,∠BAC=30°,可得源旁∠ABC=60°
即可得到∠ABC=∠BAE,再有EF⊥AB,,即可根据AAS证得△ACB≌△EFA,即得结果;
②由△ACD是等边三角形可得AC=AD,∠DAC=60°,即可证得AD∥EF,根据一组对边平行且相等的四边形是平行四边形即可证雹陪橡得结果。
①∵△ABE是等边三角形,
∴AB=AE,∠BAE=60°.
在Rt△ABC中,
∵∠BAC=30°,
∴∠ABC=60°,
∴乱塌∠ABC=∠BAE.
∵EF⊥AB,
∴∠EFA=∠ACB=90°,
∴△ACB≌△EFA(AAS),
∴AC=EF.
②∵△ACD是等边三角形,
∴AC=AD,∠DAC=60°.
又∵AD=EF,∠DAF=60°+30°=90°=∠EFA.
∴AD∥EF
∴四边形ADFE是平行四边形(一组对边平行且相等的四边形是平行四边形).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式