求定积分∫₀¹(χ²+3χ+2)÷χdχ
3个回答
展开全部
上下同时除以√x,
=xsin(1/x)/√(1+1/x) ,令1/x=t
=sint/t*1/√(1+t)
t→0,sint~t
=1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
上下同时除以x,
=xsin(1/2x)/√(1-2/x) ,令1/x=t
=sin(t/2)/t*1/√(1-2t)
t→0,sint~t
=lim(t/2)/t
=1/2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
x→0-时,|x|=-x
则原式=limsinx/(-x)
x→0,sinx~x
原式=-1
=xsin(1/x)/√(1+1/x) ,令1/x=t
=sint/t*1/√(1+t)
t→0,sint~t
=1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
上下同时除以x,
=xsin(1/2x)/√(1-2/x) ,令1/x=t
=sin(t/2)/t*1/√(1-2t)
t→0,sint~t
=lim(t/2)/t
=1/2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
x→0-时,|x|=-x
则原式=limsinx/(-x)
x→0,sinx~x
原式=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫[(x-3)/(x^2-x+1 )]dx
=1/2∫[(2x-1-5)/(x^2-x+1 )]dx
=1/2∫[(2x-1)/(x^2-x+1 )]d(x^2-x+1)-5/2∫/(x^2-x+1 )dx
=1/2ln(x^2-x+1 )-5/2∫/(x^2-x+1 )dx
=1/2ln(x^2-x+1 )-(5√3)/3*arctan[√3*(2x-1)/3]+C
其中:
5/2∫dx/x^2-x+1
=5/2∫dx/[(x-1/2)^2+3/4]
=5/2∫d(x-1/2)/[(x-1/2)^2+3/4]
=5/2*(2/√3)*arctan[(x-1/2)/(√3/2)]+C
=(5√3)/3*arctan[√3*(2x-1)/3]+C
=1/2∫[(2x-1-5)/(x^2-x+1 )]dx
=1/2∫[(2x-1)/(x^2-x+1 )]d(x^2-x+1)-5/2∫/(x^2-x+1 )dx
=1/2ln(x^2-x+1 )-5/2∫/(x^2-x+1 )dx
=1/2ln(x^2-x+1 )-(5√3)/3*arctan[√3*(2x-1)/3]+C
其中:
5/2∫dx/x^2-x+1
=5/2∫dx/[(x-1/2)^2+3/4]
=5/2∫d(x-1/2)/[(x-1/2)^2+3/4]
=5/2*(2/√3)*arctan[(x-1/2)/(√3/2)]+C
=(5√3)/3*arctan[√3*(2x-1)/3]+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询