设函数z由xcosy+ycosz+zcosx=1所确定,则全微分dz=?
展开全部
等式两边对x求偏导:cosy-ysinz* Z'x+Z'x* cosx-zsinx=0, 得:Z'x=(zsinx-cosy)/(cosx-ysinz)
等式两边对y求偏导:-xsiny+cosz-ysinz*Z'y+Z'y*cosx=0,得:Z'y=(xsiny-cosz)/(cosx-ysinz)
因此dz=Z'x*dx+Z'y*dy=[(zsinx-cosy)dx+(xsiny-cosz)dy]/(cosx-ysinz)
等式两边对y求偏导:-xsiny+cosz-ysinz*Z'y+Z'y*cosx=0,得:Z'y=(xsiny-cosz)/(cosx-ysinz)
因此dz=Z'x*dx+Z'y*dy=[(zsinx-cosy)dx+(xsiny-cosz)dy]/(cosx-ysinz)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询