证明方程 sinx+x+1=0 在开区间(-π/2,π/2)内至少有一个根

 我来答
科创17
2022-06-27 · TA获得超过5901个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:175万
展开全部
证明:设f(x)=sinx+x+1,则f(-π/2)=sin(-π/2)+(-π/2)+1=-π/20
由于y=sinx,y=x两个函数均连续,则由图像可知,函数f(x)在左端点函数值小于0,右端点函数值大于0,函数连续,则在区间内至少有一根.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式