二次函数的交点式怎么求?
1个回答
展开全部
二次函数交点式为:y=a(x-x1)(x-x2),这里与x轴的交点坐标为(x1,0),(x2,0)还需要知道第三点即可求解。
举例如下:
已知二次函数与x轴的交点为(1,0)(2,0),以及函数图像像一点(4,12),求解析式。
解:设二次函数解析式为y=a(x-1)(x-2),则
12=a(4-1)(4-2)
12=a×3×2
12=6a
解得:a=2
故,函数解析式为:y=2(x-1)(x-2)。
顶点决定抛物线的位置,几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同。
扩展资料:
二次函数一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a<0,b<0);当对称轴在y轴右时,a与b异号(即a0或a>0,b<0)(ab<0)。
事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到
举例如下:
已知二次函数与x轴的交点为(1,0)(2,0),以及函数图像像一点(4,12),求解析式。
解:设二次函数解析式为y=a(x-1)(x-2),则
12=a(4-1)(4-2)
12=a×3×2
12=6a
解得:a=2
故,函数解析式为:y=2(x-1)(x-2)。
顶点决定抛物线的位置,几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同。
扩展资料:
二次函数一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a<0,b<0);当对称轴在y轴右时,a与b异号(即a0或a>0,b<0)(ab<0)。
事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询