用函数极限的定义证明

用函数极限的定义证明只能用高数书上的两个极限定义证明... 用函数极限的定义证明只能用高数书上的两个极限定义证明 展开
 我来答
基基兽
2016-10-03
知道答主
回答量:28
采纳率:0%
帮助的人:12.9万
展开全部


这样子就可以了

961131623
2016-10-04 · TA获得超过333个赞
知道答主
回答量:68
采纳率:0%
帮助的人:27.4万
展开全部
(1)令f(x)=(2x+3)/3x,由于|f(x)-A|=|f(x)-2/3|=|1/x|,
任意ε>0,要证存在M>0,当|x|>M时,不等式|(1/x)-0|<ε成立。
因为这个不等式相当于1/|x|1/ε.由此可知,如果取M=1/ε,那么当|x|>M=1/ε时,不等式|1/x-0|∞时,limf(x)=2/3.

(3)小弟不才,此题不会。。。
其他网友的解答:
[x-2]<δ。-δ<x-21-δ>0
[1/(x-1)-1]=[2-x]/[x-1]<δ/(1-δ)=ε,可以设δ=ε/(1+ε)。
下面用ε-δ语言来证明x趋近2时,1/(x-1)的极限是1。
对任意小的0<ε<1,取a=ε/(1+ε)。
当[x-2](1+ε)时,ε>[x-2](1+ε)=[x-2]+[x-2]ε,[x-2]<ε(1-[x-2]),
[1/(x-1)-1]=[x-2]/[x-2+1]<[x-2]/(1-[x-2])<ε。
所以,x趋近2时,1/(x-1)的极限是1。

(4)如果这题极限为2的话,可以这样证明:
函数在点x=1是没有定义的,但是函数当x->1时的极限存在或不存在与它并无关系。事实上,任意ε>0,将不等式|f(x)-2|<ε约去非零因子x-1后,就化为|x-1|<ε,因此,只要取δ=ε,那么当0<|x-1|<δ时,就有|f(x)-2|<ε.所以,原极限成立。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xlp0417
2016-10-03 · TA获得超过1.9万个赞
知道大有可为答主
回答量:7213
采纳率:88%
帮助的人:2462万
展开全部
ε-X定义,
【分析】欲使
|(3x²-1)/(x²+4)-3|=13/(x²+4)<ε
成立,
∵ 13/(x²+4)<13/x²
∴ 仅需13/x²<ε
解得:|x|>√(13/ε)

【证明】
对于任意ε>0,
取X=√(13/ε)
当|x|>X时,|x|>√(13/ε)
∴ 13/x²<ε
∴ |(3x²-1)/(x²+4)-3|=13/(x²+4)<13/x²<ε
∴ lim(3x²-1)/(x²+4)=3
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式