十字相乘法解一元二次方程
需注意:十字相乘法本质是一种简化方程的形式,它能把二次三项式分解因式,但是要务必注意各项系数的符号。
十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法的用处:用十字相乘法来分解因式。用十字相乘法来解一元二次方程。
十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。十字相乘法的缺陷:有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。十字相乘法只适用于二次三项式类型的题目。十字相乘法比较难学。
2024-11-19 广告
为什么叫十字相乘法,这与用这种方法解题的方式有关. 这要从这种方法的更一般的形式说起.
我们一起来看下面的等式:
(ax+b)(cx+d)
=acx²+(ad+bc)x+bd.
这个等式反过来写就是:
acx²+(ad+bc)x+bd
=(ax+b)(cx+d).
我们如果把二次项acx²的系数ac和常数项bd按下图的方式写在一个正方形的四个顶点处,那么,让同一条对角线上的两个数相乘之后,我们就得到两个乘积:ad和bc.
让这两个乘积相加,则有ad+bc,这正好是一次项(ad+bc)x的系数.
而在同一行,横着的两个数,让左边的数乘上x再加右边的数,就得到:ax+b和cx+d两个式子,这正是因式分解后得到的结果(ax+b)(cx+d)中的两个因式.
而上图中出现的那个“×”,像个斜放着的“十”字,所以我们称这种方法为:十字相乘法.
这个方法的应用如下:
例3. 解方程:6x²-2x-28=0.
分析:分别把6和-28进行分解,然后作十字相乘,找可以得到-2的结果.如图:
这里,6分解成2×3,-28分解成4×(-7),作十字相乘,得到两个乘积:-14和12,让两个积相加,就得到一次项的系数-2. 每一行,横着的两个数,左边的数乘x再加上右边的数,得到:2x+4和3x-7.
所以6x²-2x-28
=(2x+4)(3x-7)=0.
这个方程的解为:
广告 您可能关注的内容 |