偏导数的证明
1个回答
展开全部
分类: 教育/科学 >> 学习帮助
问题描述:
r=(x^2+y^2+z^2)1\2
证明:r(xx)+r(yy)+r(zz)=2\r
要过程!
解析:
对x的一阶导数
r(x)=(1/2)*(x^2+y^2+z^2)^(-1/2)*2x
=x*(x^2+y^2+z^2)^(-1/2)
对y的一阶导数
r(y)=y*(x^2+y^2+z^2)^(-1/2)
对z的一阶导数
r(z)=z*(x^2+y^2+z^2)^(-1/2)
二阶偏导函数
r(xx)=(x^2+y^2+z^2)^(-1/2)-(1/2)x*(x^2+y^2+z^2)^(-3/2)*2x
=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2)
r(yy)=(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2)
r(zz)=(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
r(xx)+r(yy)+r(zz)=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)(x^2+y^2+z^2)^(-1/2)*(x^2+y^2+z^2)^(-1)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)^(-1/2)
=2(x^2+y^2+z^2)^(-1/2)
=2/r
问题描述:
r=(x^2+y^2+z^2)1\2
证明:r(xx)+r(yy)+r(zz)=2\r
要过程!
解析:
对x的一阶导数
r(x)=(1/2)*(x^2+y^2+z^2)^(-1/2)*2x
=x*(x^2+y^2+z^2)^(-1/2)
对y的一阶导数
r(y)=y*(x^2+y^2+z^2)^(-1/2)
对z的一阶导数
r(z)=z*(x^2+y^2+z^2)^(-1/2)
二阶偏导函数
r(xx)=(x^2+y^2+z^2)^(-1/2)-(1/2)x*(x^2+y^2+z^2)^(-3/2)*2x
=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2)
r(yy)=(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2)
r(zz)=(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
r(xx)+r(yy)+r(zz)=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)(x^2+y^2+z^2)^(-1/2)*(x^2+y^2+z^2)^(-1)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)^(-1/2)
=2(x^2+y^2+z^2)^(-1/2)
=2/r
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询