数学建模的一般步骤如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数。
2、 建立数学模型并数学、数值地求解、确定参数。
3、 用实际问题的实测数据等来检验该数学模型。
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。