正交矩阵的特征值一定为1吗?
一定等于1或-1。
证明如下:
设λ是正交矩阵A的特征值,x是A的属于特征值λ的特征向量,即有 Ax = λx,且 x≠0。两边取转置,得 x^TA^T = λx^T 所以 x^TA^TAX = λ^2x^Tx,因为A是正交矩阵,所以 A^TA=E,所以 x^Tx = λ^2x^Tx,由 x≠0 知 x^Tx 是一个非零的数,故 λ^2=1,所以 λ=1或-1。
如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵,若A为正交阵,则满足以下条件 :
1、AT的各行是单位向量且两两正交。
2、AT的各列是单位向量且两两正交。
3、(Ax,Ay)=(x,y)x,y∈R。
4、|A|=1或-1。
5、正交矩阵通常用字母Q表示。
正交矩阵的作用
数值分析自然的利用了正交矩阵的很多数值线性代数的性质。例如,经常需要计算空间的正交基,或基的正交变更;二者都采用了正交矩阵的形式。有行列式±1和所有模为1的特征值是对数值稳定性非常有利的。
一个蕴涵是条件数为1(这是极小的),所以在乘以正交矩阵的时候错误不放大。很多算法为此使用正交矩阵如Householder反射和Givens旋转。有帮助的不只是正交矩阵是可逆的,还有它的逆矩阵本质上是免花费的,只需要对换索引(下标)。
置换是很多算法成功的根本,包括有局部定支点(partialpivoting)的运算繁重的高斯消去法(这里的置换用来定支点)。但是它们很少明显作为矩阵出现;它们的特殊形式允许更有限的表示,比如n个索引的列表。