矩阵A与B相似,则A与B的伴随矩阵也相似,请问如何证明

矩阵A与B相似,则A与B的伴随矩阵也相似,请问如何证明... 矩阵A与B相似,则A与B的伴随矩阵也相似,请问如何证明 展开
 我来答
帐号已注销
2019-06-07 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15万
展开全部

A,B相似,则存在可逆矩阵P,使得B=P^(-1)AP

则B*=(P^(-1)AP)*=P*A*(P^(-1))*

=P*A*(P*)^(-1)

因此B*与A*相似

n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量

注: 定理的证明过程实际上已经给出了把方阵对角化的方法。

若矩阵可对角化,则可按下列步骤来实现:

1、 求出全部的特征值

2、对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;

3、上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。

扩展资料:

当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

参考资料来源:百度百科--相似矩阵

zzllrr小乐
高粉答主

2018-05-04 · 小乐图客,小乐数学,小乐阅读等软件作者
zzllrr小乐
采纳数:20147 获赞数:78778

向TA提问 私信TA
展开全部
A,B相似,则存在可逆矩阵P,使得B=P^(-1)AP

则B*=(P^(-1)AP)*=P*A*(P^(-1))*
=P*A*(P*)^(-1)
因此B*与A*相似
追问
麻烦再问下,这是不是也表明了A,B的伴随矩阵相似不需要A,B为可逆矩阵
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2023-10-28 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1540万
展开全部

简单计算一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
O十子FLY
2019-07-28
知道答主
回答量:14
采纳率:0%
帮助的人:2.7万
展开全部
A与B相似,则A的逆矩阵与B的逆矩阵也相似,A伴随等于A的逆矩阵乘以A的行列式,又因为A的多项式与B的多项式相似,且A的逆矩阵与B的逆矩阵也相似,故A的逆矩阵的多项式与B的逆矩阵的多项式也相似,所以A的逆矩阵乘以A的行列式与B的逆矩阵乘以B的行列式相似,即A伴随相似与B伴随
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式