求一道高数题20.
展开全部
该微分方程属于缺 x 型,即缺自变量型。
设 y' = p 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy
微分方程化为 y^2pdp/dy = p, p = 0 或 y^2dp/dy = 1
p = y' = 0, 得 y = C;
y^2dp/dy = 1 即 dp = dy/y^2, p = -1/y+C1 = (C1y-1)/y = dy/dx
dx = ydy/(C1y-1) = (1/C1)[1+1/(C1y-1)]dy
x = (1/C1)[y+(1/C1)ln|C1y-1|] + C2
设 y' = p 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy
微分方程化为 y^2pdp/dy = p, p = 0 或 y^2dp/dy = 1
p = y' = 0, 得 y = C;
y^2dp/dy = 1 即 dp = dy/y^2, p = -1/y+C1 = (C1y-1)/y = dy/dx
dx = ydy/(C1y-1) = (1/C1)[1+1/(C1y-1)]dy
x = (1/C1)[y+(1/C1)ln|C1y-1|] + C2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由原来的定积分∫<-1,x>√(1-e^t)dt=y
很明显有积分上限x=-1时,y=0
很明显有积分上限x=-1时,y=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询