三角形纸片ABC折叠3次,使3个顶点重合于纸片内的同一点P。α+∠β+∠γ= ∠1+∠2+∠3+∠4+∠5+∠6=
是初一下学期补充习题19页的题目,图片我弄不上去.(2)如图2,如果把三角形ABC折叠3次后,3个顶点并不重合于同一点P,那么你在第一题中关于"∠1+∠2+∠3+∠4+∠...
是初一下学期补充习题19页的题目,图片我弄不上去.
(2)如图2,如果把三角形ABC折叠3次后,3个顶点并不重合于同一点P,那么你在第一题中关于"∠1+∠2+∠3+∠4+∠5+∠6的结论是否仍然成立?请说明理由! 展开
(2)如图2,如果把三角形ABC折叠3次后,3个顶点并不重合于同一点P,那么你在第一题中关于"∠1+∠2+∠3+∠4+∠5+∠6的结论是否仍然成立?请说明理由! 展开
4个回答
展开全部
(1)180,360
(2)四边形的内角和说明∠1+∠6=2∠A,同理,∠2+∠3=2∠B,∠4+∠5=2∠C。
所以∠1+∠2+∠3+∠4+∠5+∠6=2(∠A+∠B+∠C)=360 成立。
(2)四边形的内角和说明∠1+∠6=2∠A,同理,∠2+∠3=2∠B,∠4+∠5=2∠C。
所以∠1+∠2+∠3+∠4+∠5+∠6=2(∠A+∠B+∠C)=360 成立。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∠1+∠2+∠3+∠4+∠5+∠6=∠AED+∠ADE+∠BFG+∠BGF+∠CHL+∠CLH
等于△AED+△BFG+△CHL三个三角形的总内角和减去∠A、∠B、∠C三个角。
等于180×3-180=360度。
利用到了全等三角形的性质。
等于△AED+△BFG+△CHL三个三角形的总内角和减去∠A、∠B、∠C三个角。
等于180×3-180=360度。
利用到了全等三角形的性质。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询