(2012?福州) 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.

(2012?福州)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD... (2012?福州) 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD=23,求AE的长. 展开
 我来答
曲孤s4
2014-12-25 · 超过66用户采纳过TA的回答
知道答主
回答量:187
采纳率:100%
帮助的人:155万
展开全部
(1)证明:如图1,连接OC,
∵CD为⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∵AD⊥CD,
∴∠ADC=90°,
∴∠OCD+∠ADC=180°,
∴AD∥OC,
∴∠1=∠2,
∵OA=OC,
∴∠2=∠3,
∴∠1=∠3,
则AC平分∠DAB;

(2)解:
法1:如图2,连接OE,
∵AB是⊙O的直径,
∴∠ACB=90°,
又∵∠B=60°,
∴∠1=∠3=30°,
在Rt△ACD中,CD=2
3
,∠1=30°,
∴AC=2CD=4
3

在Rt△ABC中,AC=4
3
,∠CAB=30°,
∴AB=
AC
cos∠CAB
=
4
3
cos30°
=8,
∵∠EAO=2∠3=60°,OA=OE,
∴△AOE是等边三角形,
∴AE=OA=
1
2
AB=4;

法2:如图3,连接CE,
∵AB为⊙O的直径,
∴∠ACB=90°,
又∠B=60°,
∴∠1=∠3=30°,
在Rt△ACD中,CD=2
3

∴AD=
CD
tan∠DAC
=
2
3
tan30°
=6,
∵四边形ABCE是⊙O的内接四边形,
∴∠B+∠AEC=180°,
又∵∠DEC=∠B=60°,
在Rt△CDE中,CD=2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式