(2013?四川)如图,在三棱柱ABC-A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线
(2013?四川)如图,在三棱柱ABC-A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线...
(2013?四川)如图,在三棱柱ABC-A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1-QC1D的体积.(锥体体积公式:V=13Sh,其中S为底面面积,h为高)
展开
1个回答
展开全部
(Ⅰ)在平面ABC内,过点P作直线l和BC平行,由于直局梁线l不在平面A1BC内纳核,而BC在平面A1BC内,
故直线l与平面A1BC平行.
三角形ABC中,∵AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,∴AD⊥BC,∴l⊥AD.
再由AA1⊥底面ABC,可得 AA1⊥l.
而AA1∩AD=A,
∴直线l⊥平面ADD1A1 .
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,过点D作DE⊥AC,
∵侧棱AA1⊥底面ABC,故三棱柱ABC-A1B1C为直三棱柱,
故DE⊥平面AA1C1C.
直角三角形ACD中,∵AC=2,桐茄运∠CAD=60°,∴AD=AC?cos60°=1,∴DE=AD?sin60°=
.
∵S△QA1C1=
?A1C1?AA1=
×2×1=1,
∴三棱锥A1-QC1D的体积 VA1?QC1D=VD?QA1C1=
?S△QA1C1?DE=
×1×
=
.
故直线l与平面A1BC平行.
三角形ABC中,∵AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,∴AD⊥BC,∴l⊥AD.
再由AA1⊥底面ABC,可得 AA1⊥l.
而AA1∩AD=A,
∴直线l⊥平面ADD1A1 .
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,过点D作DE⊥AC,
∵侧棱AA1⊥底面ABC,故三棱柱ABC-A1B1C为直三棱柱,
故DE⊥平面AA1C1C.
直角三角形ACD中,∵AC=2,桐茄运∠CAD=60°,∴AD=AC?cos60°=1,∴DE=AD?sin60°=
| ||
2 |
∵S△QA1C1=
1 |
2 |
1 |
2 |
∴三棱锥A1-QC1D的体积 VA1?QC1D=VD?QA1C1=
1 |
3 |
1 |
3 |
| ||
2 |
| ||
6 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |