已知正数xy满足x+2y=2,则求xy的最大值
1个回答
关注
展开全部
基本不等式最大值最小值公式:copya+b≥2√(ab)。a大于0,b大于0,当且仅当a=b时,等号成立。定义:任意两个正数的算术平均数不小于它们的几何平均数。
一般地,用纯粹的大于号">"、小于号"<"连接的不等式称为严格不等式,用不小于号(大于或等于号)"≥"、不大于号(小于或等于号)"≤"连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(,≥,≤,≠)连接的式子叫做不等式。
均值定理:
已知x,y∈R+,x+y=S,x·y=P
(1)如果P是定值,那么当且仅当x=y时,S有最小值;
(2)如果S是定值,那么当且仅当x=y时,P有最大值。
或
当a、b∈R+,a+b=k(定值)时,a+b≥2√ab (定值)当且仅当a=b时取等号 。
(3)设X1,X2,X3,……,Xn为大于0的数。
则X1+X2+X3+……+Xn≥n乘n次根号下X1乘X2乘X3乘……乘Xn
(一定要熟练掌握)
当a、b、c∈R+, a + b + c = k(定值)时, a+b+c≥3*(3)√(abc)
即abc≤((a+b+c)/3)^3=k^3/27 (定值) 当且仅当a=b=c时取等号。
例题:1。求x+y-1的最小值。
分析:此题运用了均值定理。∵x+y≥2√xy。 ∴x+y-1≥2√xy -1
咨询记录 · 回答于2022-03-17
已知正数xy满足x+2y=2,则求xy的最大值
稍等哦
x>0,y>0,∴x+2y=20≥2 2xy ,∴0<xy≤50,当且仅当x=2y时取等号,即xy的最大值是50.故答案为:50.
如果是等于2的话结果就是5
基本不等式最大值最小值公式:copya+b≥2√(ab)。a大于0,b大于0,当且仅当a=b时,等号成立。定义:任意两个正数的算术平均数不小于它们的几何平均数。一般地,用纯粹的大于号">"、小于号"<"连接的不等式称为严格不等式,用不小于号(大于或等于号)"≥"、不大于号(小于或等于号)"≤"连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(,≥,≤,≠)连接的式子叫做不等式。均值定理:已知x,y∈R+,x+y=S,x·y=P(1)如果P是定值,那么当且仅当x=y时,S有最小值;(2)如果S是定值,那么当且仅当x=y时,P有最大值。或当a、b∈R+,a+b=k(定值)时,a+b≥2√ab (定值)当且仅当a=b时取等号 。(3)设X1,X2,X3,……,Xn为大于0的数。则X1+X2+X3+……+Xn≥n乘n次根号下X1乘X2乘X3乘……乘Xn(一定要熟练掌握)当a、b、c∈R+, a + b + c = k(定值)时, a+b+c≥3*(3)√(abc)即abc≤((a+b+c)/3)^3=k^3/27 (定值) 当且仅当a=b=c时取等号。例题:1。求x+y-1的最小值。分析:此题运用了均值定理。∵x+y≥2√xy。 ∴x+y-1≥2√xy -1