偏导数连续为什么一定可微?
函数可微则这个函数一定连续,但连续不一定可微。多元函数可微则偏导数一定存在,可微比偏导数存在要求强而偏导数连续可以退出可微,但反推不行。
若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。
设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:
△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零.则称f在P0点可微。
可微的充要条件是曲面z=f(x,y)在点P(x0,y0,f(x0,y0))存在不平行于z轴的切平面Π的充要条件是函数f在点P0(x0,y0)可微,这个切面的方程应为Z-z=A(X-x0)+B(Y-y0)。
判断可导、可微、连续的注意事项:
1、在一元的情况下,可导=可微->连续,可导一定连续,反之不一定。
2、二元就不满足以上的结论,在二元的情况下:
(1)偏导数存在且连续,函数可微,函数连续。
(2)偏导数不存在,函数不可微,函数不一定连续。
(3)函数不可微,偏导数不一定存在,函数不一定连续。
(4)函数连续,偏导数不一定存在,函数不一定可微。
(5)函数不连续,偏导数不一定存在,函数不可微。
2024-04-02 广告