设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?A.ka1 我来答 1个回答 #热议# 应届生在签三方时要注意什么? 新科技17 2022-07-07 · TA获得超过5889个赞 知道小有建树答主 回答量:355 采纳率:100% 帮助的人:74.2万 我也去答题访问个人页 关注 展开全部 r(A)=n-1说明解空间的秩为 1 所以找一个非零解就行. 显然a1-a2是一个非零解. 所以通解为 C(a1-a2) 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-04-29 设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为? A.ka1 2022-08-30 n阶方阵A,对于AX=0,若每个n维向量都是解,则R(A)=? 2022-06-02 设A是n阶方阵,a1、a2是其次线性方程组AX=0的两个不同解向量,则|A|=----拜求! 2023-05-20 设A是秩为n-1的n阶矩阵,α1与α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )。 2022-09-04 设A为n阶方阵,且A2=A,则R(A)+ R(A- E) = 2022-05-29 如果n阶矩阵A的秩是n-1,且a1,a2是Ax=b的两不同解 则Ax=b的通解 2022-06-17 设A为n阶矩阵,r(A)=1,求证:(1)A=(a1 a2 .an)(列向量)*(b1,b2.bn ) (2) A^2=kA 2022-06-23 设A为n阶方阵,且|A|=1/2,则(2A*)*=? 为你推荐: