求证一列高数数列极限题:lim(3n^2+n)/(2n^2-1)=3/2
1个回答
展开全部
用N-ε语言
对于任意ε>0
存在N=max(1,5/2ε)
当n>N时
|(3n^2+n)/(2n^2-1)-3/2|
=|(6n^2+2n-6n^2+3)/[2(2n^2-1)]|
=(2n+3)/[2(2n^2-1)]
因为n>N>=1,所以2n+3<2n+3n=5n
2n^2-1>2n^2-n^2=n^2
(分子更大,分母更小的数更大)
<5n/[2(n^2)]
=5/2n
<5/2(5/2ε)
=ε
由极限定义
lim n->∞ (3n^2+n)/(2n^2-1)=3/2
对于任意ε>0
存在N=max(1,5/2ε)
当n>N时
|(3n^2+n)/(2n^2-1)-3/2|
=|(6n^2+2n-6n^2+3)/[2(2n^2-1)]|
=(2n+3)/[2(2n^2-1)]
因为n>N>=1,所以2n+3<2n+3n=5n
2n^2-1>2n^2-n^2=n^2
(分子更大,分母更小的数更大)
<5n/[2(n^2)]
=5/2n
<5/2(5/2ε)
=ε
由极限定义
lim n->∞ (3n^2+n)/(2n^2-1)=3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询