非惯性参照系 非惯性参考系例子
1个回答
展开全部
基本概念编辑 非惯性参照系就是能够对同一个被观测的单元施加作用力的观测参照框架和附加非线性的坐标系的统称。非惯性参照系的种类无穷多。在经典机械力学中,任何一个使得“伽利略相对性原理”失效的参照系都是所谓的“非惯性参照系”。比如,一个加速转动的参照系;一个加速振动的参照系;……;一个随机任意加速运动的参照系等等。即任何一个使得牛顿第一定律和牛顿第二定律不再成立的参照系。在经典电动力学中,任何一个使得“爱因斯坦相对性原理”失效的参照系都是所谓的“非惯性参照系”。比如,任何一个使得洛仑兹电磁作用力定律F=qE+qv×B,或者麦克斯韦方程组不再成立的参照系。 惯性力编辑
经典力学对力定义相当简单明了——力是物体对物体的作用,不错,相当简单明了!于是,人们认为只有具备两个或两个以上的物体才有资格谈力,凡是谈到力则一定有施力物体,也有受力物体,这似乎与人们的生活实践相一致。
可是,当人们坐在车上,并以车为参照系时,我们发现车上的物体居然可以无缘无故地加速运动起来,似乎有一个力作用在物体之上,这是一个什么力呢?它具有什么性质呢?施力物体是什么?无论我们怎样努力寻找,始终无法把这个力的施力物体找出来。为了弄清楚原因,我们下了车,在地面上以地面为参照系再来观察一番,这时,我们恍然大悟,原来当车一旦发生加速运动时,车上的物体就会在车上相对于车厢加速运动起来,物体并没有发生运动而是保持静止状态,物体并没有受到力的作用,当然我们找不到施力物体了。可见,在不同参照系上观察物体的运动,观察的结果会截然不同!
于是,人们把参照系进行了分类,凡是牛顿第二定律能够适用的参照系称为惯性参照系,反之,牛顿第二定律不适用的参照系称为非惯性参照系。牛顿第二定律所谓是否适用,我们考虑的因素实际上是力的产生条件,如果具备力的产生条件,则必然符合牛顿第二定律。通过总结,人们发现,凡是相对地面静止或者做匀速直线运动的参照系都是惯性参照系,而相对于地面做变速运动的参照系是非惯性参照系;在众多的惯性参照系中,相对地面静止的惯性参照系具有特殊的优点,把它叫做绝对惯性参照系。
人们对惯性参照系进行了诸多讨论的同时,还对非惯性参照系进行了讨论。一个物体在非惯性参照系中似乎在力作用下发生了加速运动,可是找不到其施力物体。为了迎合牛顿第二定律,人们假设了物体受到一个力的作用,这个力由物体的质量及其加速度的乘积决定,但是由于找不到施力物体,人们认为这不是一个真实存在的力,而是一个虚构的力,把这个力称为“惯性力”。
很明显,“惯性力”大小取决于物体的加速度大小,而物体的加速度大小实际又取决于非惯性参照系相对于惯性参照系的加速度。那么,如何通过动力学实验找到惯性系,从而确定任意一个对象的加速度呢?牛顿以“水桶实验”来证实其可行性。当一个盛水的水桶带着桶里的水转起来的时候,水面会由平坦变成凹形,如果水桶停止转动而水未停下,水面仍会呈凹形。如果建立一个与水相对静止的转动参照系,那么在这个参照系里水是静止的,但这个参照系里的实验者却会发现,似乎有一个向外的力维持着水面的形状,不让四周的水向中心回流,于是实验者便可以下结论:我所在的系是个非惯性系,其中有惯性力维持着水面的凹形。推而广之,只要在某个参照系里,水静止但水面不平坦,这就可作为非惯性系的判断依据,这个非惯性系中存在着惯性力。牛顿认为,参照系中若发生这种情况,则说明它是一个相对于“绝对空间”有加速运动的参照系,并且通过动力学实验可以测量出绝对的加速度。
然而这充其量只是一个判据,尚不足以说明惯性力究竟是从何而来的,曾经遭受过马赫的强烈批判。后来的狭义相对论虽然否定了绝对空间,但也并没有解决这个问题。另一方面,爱因斯坦尝试将万有引力纳入狭义相对论框架时失败了,他后来在马赫原理的启发下提出了等效原理和广义相对性原理,取消了惯性系的优越地位,因此不再有必要区分惯性系与非惯性系,后来进一步建立了广义相对论。
科里奥利编辑
相对于惯性参照系做变速运动的参照系是非惯性参照系,在非惯性参照系中的物体会受到惯性力作用。转动也是一种变速运动,且是一种经常可见的变速运动,如果以一个相对于地面转动的物体为参照系,那么物体在这个参照系中将受到两种惯性力的作用——离心惯性力与科里奥利惯性力。而本文仅对科里奥利惯性力作相应的讨论。
对于科里奥利力[1],由于各方面的原因,笔者不能查阅与摘录最原始的关于科里奥利力的论述文献,在本文中谨摘录了《力学基础》(漆安慎、杜婵英编写,高等学校试用教材,高等教育出版社出版发行的1982年12月第1版)第125页的论述:
如前所述,当质点静止于匀速转动的参照系中,在其中将观察到质点受离心惯性力(也叫做惯性离心力,人民卫生出版社,胡新珉主编,医学物理学第七版,P6)的作用。若质点相对于匀速转动的参照系运动,则质点可能受到另一种惯性力,即科里奥利力。
参阅图2.35,水平光滑可绕铅直轴O转动。设圆盘静止,小球在合力为零的情况下,自盘上A尚半径匀速运动运载B,无论从盘上盘下观点,小球均有相同的运动状态。
假若圆盘现以恒定角速率转动,而处于盘上A点的小球只具有与A点相同的线速度,则经过很短的时间,可近似认为小球相对于惯性系已从原来盘上A所在的点匀速运动至A所在的点C,如图2.35(b)所示(注意有关图上为明显起见角度是夸大的).现在使圆盘转动时小球同时参与上述由A至B和由A至C这两种相对于惯性系的匀速直线运动,小球应到达图
2.35(c)中D点,与此同时,小球原来所在半径已转过一定角度,由AB转至CD’,从圆盘上看,小球没能保持在原来所在的半径上而落后一定DD’。
如果圆盘上有沿半径方向内壁光滑的狭槽,情况就不同了。设在槽内且处于A点的小球相对于惯性系仍具有上述沿AB和AC的速度,但这时由于受到槽的约束,经过一很短时间,小球将到达D’点,从而补足自D至D’的位移,如图2.36(a)所示,可见,在这一运动中,小球相对于惯性必然获得某种与半径垂直的附近加加速度,以补足位移DD’。
设小球沿半径垂直方向作匀变速度运动,用表示附加加速度的大小,表示小球自A运动到D’的时间,则在时间内,圆盘的角位移为,又因考虑到小球沿槽作匀速运动,表示它相对于圆盘刻槽的速率,有故与上式对比得
这一附加加速度是在惯性系中观察到的,称作科里奥利加速度,它产生于某相对相互作用力。质量为M的小球处于狭槽中,这个力只能是狭槽的边缘所施的挤压弹性力,此力应与狭槽垂直,且大小等于,如图2.36(a)所示。
现从圆盘这一非惯性系观察,小球仅沿槽作匀速度直线运动,按照牛顿第二定律,小球所受合力应为零。但小球已受到方才提到的力,故必存在一个惯性力与力平衡。
4科里奥利加速度的实质
人们都以为,科里奥利加速度是什么非惯性力作用的结果,其实非也。这实际上是物质在中性子速度旋度中的运动属性而已,也就是物理学属性第二定律所描述的情形。
其形成原因非常简单——如果圆盘相对于地面在逆时针转动时,那么,当以圆盘为参照系时,暗物质中性子则顺时针以相同的角速度在旋转,在参照系空间内部形成了一定的速度旋度,通过旋度计算我们可以得到,是中性子在圆盘参照系中转动的角速度矢量,根据物理学属性第二定律可知,物体在这样的参照系中的加速度为,即,是物体在圆盘参照系中的速度。这就是科里奥利加速度。
由此可知,在这样的惯性系中,物体可能受到两个环境属性力——科里奥利力与离心力的作用。
广义相对论编辑
牛顿力学和狭义相对论中的相对性原理,其内容表述为“物理规律在一切惯性系里具有相同的形式”,可以看出在牛顿力学和狭义相对论中,惯性系具有“优越性”,一个对象有没有加速度依然是绝对的。而马赫否认了绝对的加速度,认为加速度也是相对的,惯性力是相对于其他具体对象加速运动而产生的,而非相对于“绝对空间”。在马赫原理和等效原理的基础上,爱因斯坦提出了广义相对性原理,巧妙地利用引力取消了惯性系的优越地位,认为“物理规律在一切参照系里都具有相同的形式”,其数学方程在任意坐标系变换下
形式都相同,这就是广义协变性。这样非惯性系与惯性系得以统一,大大增强了物理定律的普适性。 非惯性系与惯性系的关系编辑
物体在非惯性系中受到惯性力与物体在惯性系中不受力是对同一物理现象的不同的描述。
惯性系与非惯性系对同一物理现象的描述不同,但这种描述是等价的[2]。
由于是对同一现象的不同描述,所以是等价的。即物体在非惯性系中受到惯性力等于物体在惯性系中不受力,即惯性力等于不受力。用F表示非惯性系中的惯性力,F0表示惯性系中的不受力,那么F= F0。F=-ma, F0=0,惯性力F为不为零的量,F0等于零,而F= F0说明惯性系与非惯性系对力的起点的定义是不同的。公式F= F0的成立是因为这是对同一现象的描述,而量上的不相等,是由于惯性系与非惯性系有各自对F0的定义,即不受力的定义;是由于惯性系与非惯性系对力的起点定义不同造成的。参考系即惯性系与非惯性系都是以自身为标准,来定义力的起点的。由于惯性系与非惯性系的运动状态不同所以对力的起点的定义产生的量会不同。
用运动状态描述就是,惯性系与非惯性系对静止的定义在量上是不同的,对变速运动的定义在量上是不同的。
对运动状态是改变的还是不变的,的判断是不同的。在惯性系是不变的运动,在非惯性系中可能就是运动状态改变的运动。在惯性系静止的物体在非惯性系是变速的,在非惯性系是静止的,在惯性系是变速的。
引力场编辑
考虑在高空向地球坠落的小物体,简化为不考虑空气和地球旋转的影响,那么分别选择地球和小物体为参照系有:
以地球为参照系:由于地球近似为惯性系,所以小物体做自由落体运动,到达地面过程中动能不断增加,其动能是由势能转换而来的,能量守恒成立。
以小物体为参照系:小物体是非惯性系,按照广义相对论,其中有一个附加引力场,引力场指向上。地球在附加引力场作用下,沿着附加引力场方向加速运动,附加引力场对地球做功,地球的动能不断增加,直至落到作为参照系的小物体上。作用于地球的附加引力场使地球动能增加,附加引力场的能量来自何方,用能量守恒怎样解释?
对于以垂直向上发射的火箭为参照系也有同样的问题。
如果自由落体是一种特殊情况,没有附加场。
那么,如果以水平加速的车作为参照系,就应该有附加场了。那么可以观察到地球在向后加速运动,在这个参照系中,地球的动能增量是由什么能源转化而来的呢?
当然以地球为参照系的时候,车的动能增量是由发动机供给的。
自由落体编辑
如果力持续作用在物体上,那么加速度保持不变。(以前我们说,力一直作用在物体上,就一直产生加速度。)。如果力忽然消失,那么加速度也消失。所以说力具有保持加速度不变的性质。
引力场中所有物体受到引力,在自由落体系中,物体的自由落体加速度与自由落体系加速度相同,加速度相互抵消。在自由落体系看来,物体不受力,静止或匀速直线运动。这样自由落体系中物体由于受到力而保持加速度不变的性质,就变成物体由于惯性而保持运动状态不变的性质。
参考资料
1. 非惯性参照系 .
2. 惯性力最新认识 2013 .西陆论坛 .2013-10-7 [引用日期2013-10-9] .
经典力学对力定义相当简单明了——力是物体对物体的作用,不错,相当简单明了!于是,人们认为只有具备两个或两个以上的物体才有资格谈力,凡是谈到力则一定有施力物体,也有受力物体,这似乎与人们的生活实践相一致。
可是,当人们坐在车上,并以车为参照系时,我们发现车上的物体居然可以无缘无故地加速运动起来,似乎有一个力作用在物体之上,这是一个什么力呢?它具有什么性质呢?施力物体是什么?无论我们怎样努力寻找,始终无法把这个力的施力物体找出来。为了弄清楚原因,我们下了车,在地面上以地面为参照系再来观察一番,这时,我们恍然大悟,原来当车一旦发生加速运动时,车上的物体就会在车上相对于车厢加速运动起来,物体并没有发生运动而是保持静止状态,物体并没有受到力的作用,当然我们找不到施力物体了。可见,在不同参照系上观察物体的运动,观察的结果会截然不同!
于是,人们把参照系进行了分类,凡是牛顿第二定律能够适用的参照系称为惯性参照系,反之,牛顿第二定律不适用的参照系称为非惯性参照系。牛顿第二定律所谓是否适用,我们考虑的因素实际上是力的产生条件,如果具备力的产生条件,则必然符合牛顿第二定律。通过总结,人们发现,凡是相对地面静止或者做匀速直线运动的参照系都是惯性参照系,而相对于地面做变速运动的参照系是非惯性参照系;在众多的惯性参照系中,相对地面静止的惯性参照系具有特殊的优点,把它叫做绝对惯性参照系。
人们对惯性参照系进行了诸多讨论的同时,还对非惯性参照系进行了讨论。一个物体在非惯性参照系中似乎在力作用下发生了加速运动,可是找不到其施力物体。为了迎合牛顿第二定律,人们假设了物体受到一个力的作用,这个力由物体的质量及其加速度的乘积决定,但是由于找不到施力物体,人们认为这不是一个真实存在的力,而是一个虚构的力,把这个力称为“惯性力”。
很明显,“惯性力”大小取决于物体的加速度大小,而物体的加速度大小实际又取决于非惯性参照系相对于惯性参照系的加速度。那么,如何通过动力学实验找到惯性系,从而确定任意一个对象的加速度呢?牛顿以“水桶实验”来证实其可行性。当一个盛水的水桶带着桶里的水转起来的时候,水面会由平坦变成凹形,如果水桶停止转动而水未停下,水面仍会呈凹形。如果建立一个与水相对静止的转动参照系,那么在这个参照系里水是静止的,但这个参照系里的实验者却会发现,似乎有一个向外的力维持着水面的形状,不让四周的水向中心回流,于是实验者便可以下结论:我所在的系是个非惯性系,其中有惯性力维持着水面的凹形。推而广之,只要在某个参照系里,水静止但水面不平坦,这就可作为非惯性系的判断依据,这个非惯性系中存在着惯性力。牛顿认为,参照系中若发生这种情况,则说明它是一个相对于“绝对空间”有加速运动的参照系,并且通过动力学实验可以测量出绝对的加速度。
然而这充其量只是一个判据,尚不足以说明惯性力究竟是从何而来的,曾经遭受过马赫的强烈批判。后来的狭义相对论虽然否定了绝对空间,但也并没有解决这个问题。另一方面,爱因斯坦尝试将万有引力纳入狭义相对论框架时失败了,他后来在马赫原理的启发下提出了等效原理和广义相对性原理,取消了惯性系的优越地位,因此不再有必要区分惯性系与非惯性系,后来进一步建立了广义相对论。
科里奥利编辑
相对于惯性参照系做变速运动的参照系是非惯性参照系,在非惯性参照系中的物体会受到惯性力作用。转动也是一种变速运动,且是一种经常可见的变速运动,如果以一个相对于地面转动的物体为参照系,那么物体在这个参照系中将受到两种惯性力的作用——离心惯性力与科里奥利惯性力。而本文仅对科里奥利惯性力作相应的讨论。
对于科里奥利力[1],由于各方面的原因,笔者不能查阅与摘录最原始的关于科里奥利力的论述文献,在本文中谨摘录了《力学基础》(漆安慎、杜婵英编写,高等学校试用教材,高等教育出版社出版发行的1982年12月第1版)第125页的论述:
如前所述,当质点静止于匀速转动的参照系中,在其中将观察到质点受离心惯性力(也叫做惯性离心力,人民卫生出版社,胡新珉主编,医学物理学第七版,P6)的作用。若质点相对于匀速转动的参照系运动,则质点可能受到另一种惯性力,即科里奥利力。
参阅图2.35,水平光滑可绕铅直轴O转动。设圆盘静止,小球在合力为零的情况下,自盘上A尚半径匀速运动运载B,无论从盘上盘下观点,小球均有相同的运动状态。
假若圆盘现以恒定角速率转动,而处于盘上A点的小球只具有与A点相同的线速度,则经过很短的时间,可近似认为小球相对于惯性系已从原来盘上A所在的点匀速运动至A所在的点C,如图2.35(b)所示(注意有关图上为明显起见角度是夸大的).现在使圆盘转动时小球同时参与上述由A至B和由A至C这两种相对于惯性系的匀速直线运动,小球应到达图
2.35(c)中D点,与此同时,小球原来所在半径已转过一定角度,由AB转至CD’,从圆盘上看,小球没能保持在原来所在的半径上而落后一定DD’。
如果圆盘上有沿半径方向内壁光滑的狭槽,情况就不同了。设在槽内且处于A点的小球相对于惯性系仍具有上述沿AB和AC的速度,但这时由于受到槽的约束,经过一很短时间,小球将到达D’点,从而补足自D至D’的位移,如图2.36(a)所示,可见,在这一运动中,小球相对于惯性必然获得某种与半径垂直的附近加加速度,以补足位移DD’。
设小球沿半径垂直方向作匀变速度运动,用表示附加加速度的大小,表示小球自A运动到D’的时间,则在时间内,圆盘的角位移为,又因考虑到小球沿槽作匀速运动,表示它相对于圆盘刻槽的速率,有故与上式对比得
这一附加加速度是在惯性系中观察到的,称作科里奥利加速度,它产生于某相对相互作用力。质量为M的小球处于狭槽中,这个力只能是狭槽的边缘所施的挤压弹性力,此力应与狭槽垂直,且大小等于,如图2.36(a)所示。
现从圆盘这一非惯性系观察,小球仅沿槽作匀速度直线运动,按照牛顿第二定律,小球所受合力应为零。但小球已受到方才提到的力,故必存在一个惯性力与力平衡。
4科里奥利加速度的实质
人们都以为,科里奥利加速度是什么非惯性力作用的结果,其实非也。这实际上是物质在中性子速度旋度中的运动属性而已,也就是物理学属性第二定律所描述的情形。
其形成原因非常简单——如果圆盘相对于地面在逆时针转动时,那么,当以圆盘为参照系时,暗物质中性子则顺时针以相同的角速度在旋转,在参照系空间内部形成了一定的速度旋度,通过旋度计算我们可以得到,是中性子在圆盘参照系中转动的角速度矢量,根据物理学属性第二定律可知,物体在这样的参照系中的加速度为,即,是物体在圆盘参照系中的速度。这就是科里奥利加速度。
由此可知,在这样的惯性系中,物体可能受到两个环境属性力——科里奥利力与离心力的作用。
广义相对论编辑
牛顿力学和狭义相对论中的相对性原理,其内容表述为“物理规律在一切惯性系里具有相同的形式”,可以看出在牛顿力学和狭义相对论中,惯性系具有“优越性”,一个对象有没有加速度依然是绝对的。而马赫否认了绝对的加速度,认为加速度也是相对的,惯性力是相对于其他具体对象加速运动而产生的,而非相对于“绝对空间”。在马赫原理和等效原理的基础上,爱因斯坦提出了广义相对性原理,巧妙地利用引力取消了惯性系的优越地位,认为“物理规律在一切参照系里都具有相同的形式”,其数学方程在任意坐标系变换下
形式都相同,这就是广义协变性。这样非惯性系与惯性系得以统一,大大增强了物理定律的普适性。 非惯性系与惯性系的关系编辑
物体在非惯性系中受到惯性力与物体在惯性系中不受力是对同一物理现象的不同的描述。
惯性系与非惯性系对同一物理现象的描述不同,但这种描述是等价的[2]。
由于是对同一现象的不同描述,所以是等价的。即物体在非惯性系中受到惯性力等于物体在惯性系中不受力,即惯性力等于不受力。用F表示非惯性系中的惯性力,F0表示惯性系中的不受力,那么F= F0。F=-ma, F0=0,惯性力F为不为零的量,F0等于零,而F= F0说明惯性系与非惯性系对力的起点的定义是不同的。公式F= F0的成立是因为这是对同一现象的描述,而量上的不相等,是由于惯性系与非惯性系有各自对F0的定义,即不受力的定义;是由于惯性系与非惯性系对力的起点定义不同造成的。参考系即惯性系与非惯性系都是以自身为标准,来定义力的起点的。由于惯性系与非惯性系的运动状态不同所以对力的起点的定义产生的量会不同。
用运动状态描述就是,惯性系与非惯性系对静止的定义在量上是不同的,对变速运动的定义在量上是不同的。
对运动状态是改变的还是不变的,的判断是不同的。在惯性系是不变的运动,在非惯性系中可能就是运动状态改变的运动。在惯性系静止的物体在非惯性系是变速的,在非惯性系是静止的,在惯性系是变速的。
引力场编辑
考虑在高空向地球坠落的小物体,简化为不考虑空气和地球旋转的影响,那么分别选择地球和小物体为参照系有:
以地球为参照系:由于地球近似为惯性系,所以小物体做自由落体运动,到达地面过程中动能不断增加,其动能是由势能转换而来的,能量守恒成立。
以小物体为参照系:小物体是非惯性系,按照广义相对论,其中有一个附加引力场,引力场指向上。地球在附加引力场作用下,沿着附加引力场方向加速运动,附加引力场对地球做功,地球的动能不断增加,直至落到作为参照系的小物体上。作用于地球的附加引力场使地球动能增加,附加引力场的能量来自何方,用能量守恒怎样解释?
对于以垂直向上发射的火箭为参照系也有同样的问题。
如果自由落体是一种特殊情况,没有附加场。
那么,如果以水平加速的车作为参照系,就应该有附加场了。那么可以观察到地球在向后加速运动,在这个参照系中,地球的动能增量是由什么能源转化而来的呢?
当然以地球为参照系的时候,车的动能增量是由发动机供给的。
自由落体编辑
如果力持续作用在物体上,那么加速度保持不变。(以前我们说,力一直作用在物体上,就一直产生加速度。)。如果力忽然消失,那么加速度也消失。所以说力具有保持加速度不变的性质。
引力场中所有物体受到引力,在自由落体系中,物体的自由落体加速度与自由落体系加速度相同,加速度相互抵消。在自由落体系看来,物体不受力,静止或匀速直线运动。这样自由落体系中物体由于受到力而保持加速度不变的性质,就变成物体由于惯性而保持运动状态不变的性质。
参考资料
1. 非惯性参照系 .
2. 惯性力最新认识 2013 .西陆论坛 .2013-10-7 [引用日期2013-10-9] .
希卓
2024-10-17 广告
2024-10-17 广告
分布式应变监测技术是现代结构健康监测的重要组成部分。它通过在结构内部或表面布置多个应变传感器,实现对结构变形和应变的连续、实时监测。这种技术能够准确捕捉结构在各种载荷和环境条件下的应变响应,为结构的安全评估、损伤预警和寿命预测提供重要数据支...
点击进入详情页
本回答由希卓提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询