①求+y=(x^2-5x+2)/(x+12)最小值
展开全部
y = (x^2-5x+2)/(x+12)
y' = [(2x-5)(x+12)-(x^2-5x+2)]/(x+12)^2
= (x^2+24x-62)/(x+12)^2, 得唯一正驻点 x = √206-12 ≈ 2.3527
,最小值 y = [(√206-12)^2-5(√206-12)+2]/√206
= [(√206-12)^2-5(√206-12)+2]/√206 = 2√206-29 ≈ - 0.2946
y' = [(2x-5)(x+12)-(x^2-5x+2)]/(x+12)^2
= (x^2+24x-62)/(x+12)^2, 得唯一正驻点 x = √206-12 ≈ 2.3527
,最小值 y = [(√206-12)^2-5(√206-12)+2]/√206
= [(√206-12)^2-5(√206-12)+2]/√206 = 2√206-29 ≈ - 0.2946
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=(x^2+5x+2)/(x+12)
=(x^2+24x+144-19x-228+86)/(x+12)
=[(x+12)^2-19(x+12)+86]/(x+12)
=(x+12)+86/(x+12)-19
因为x>=0,所以x+12>=12>√86
所以y=(x+12)+86/(x+12)-19
>=12+86/12-19
=1/6
即最小值为1/6
=(x^2+24x+144-19x-228+86)/(x+12)
=[(x+12)^2-19(x+12)+86]/(x+12)
=(x+12)+86/(x+12)-19
因为x>=0,所以x+12>=12>√86
所以y=(x+12)+86/(x+12)-19
>=12+86/12-19
=1/6
即最小值为1/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询