(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;(2)设

(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;(2)设奇函数f(x)的定义域为R,且f(x+4)=f(x),... (1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;(2)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈[4,6]时,f(x)=2 x +1,求f(x)在区间[-2,0]上的表达式. 展开
 我来答
tygE14SW39
推荐于2016-04-25 · 超过68用户采纳过TA的回答
知道答主
回答量:123
采纳率:100%
帮助的人:128万
展开全部
(1)证明:∵f(2+x)=f(2-x)
∴f(2+(x+2))=f(2-(x+2)),即f(x+4)=f(-x)
又∵函数f(x)的周期为4
∴f(x+4)=f(x)
∴f(-x)=f(x)
又∵x∈R,定义域关于原点对称
∴函数f(x)是偶函数
(2)当x∈[-2,0]时,-x∈[0,2]
∴-x+4∈[4,6]
又∵当x∈[4,6]时,f(x)=2 x +1
∴f(-x+4)=2 -x+4 +1
又∵f(x+4)=f(x)
∴函数f(x)的周期为T=4
∴f(-x+4)=f(-x)
又∵函数f(x)是R上的奇函数
∴f(-x)=-f(x)
∴-f(x)=2 -x+4 +1
∴当x∈[-2,0]时,f(x)=-2 -x+4 -1

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式