已知函数f(x)=4x+k?2x+14x+2x+1,若对于任意实数x1,x2,x3,均存在以f(x1),f(x2),f(x3)为三边

已知函数f(x)=4x+k?2x+14x+2x+1,若对于任意实数x1,x2,x3,均存在以f(x1),f(x2),f(x3)为三边边长的三角形,则实数k的取值范围是__... 已知函数f(x)=4x+k?2x+14x+2x+1,若对于任意实数x1,x2,x3,均存在以f(x1),f(x2),f(x3)为三边边长的三角形,则实数k的取值范围是______. 展开
 我来答
纯洁小歪75
推荐于2016-01-30 · TA获得超过117个赞
知道答主
回答量:137
采纳率:0%
帮助的人:176万
展开全部
因对任意实数x1、x2、x3,都存在以f(x1)、f(x2)、f(x3)为三边长的三角形,故f(x1)+f(x2)>f(x3)对任意的x1、x2、x3∈R恒成立.
f(x)=
4x+2x+1+(k?1)2x
4x+2x+1
=1+
k?1
2x+
1
2x
+1

令t=2x+
1
2x
+1≥3,则y=1+
k?1
t
(t≥3),
当k-1>0,即k>1时,该函数在[3,+∞)上单调递减,则y∈(1,
k+2
3
],
当k-1=0,即k=1时,y∈{1},
当k-1<0,即k<1时,该函数在[3,+∞)上单调递增,y∈[
k+2
3
,1),
当k>1时,∵2<f(x1)+f(x2)≤
2k+4
3
且1<f(x3)≤
k+2
3
,故
k+2
3
≤2,∴1<k≤4;
当k=1时,∵f(x1)=f(x2)=f(x3)=1,满足条件;
当k<1时,∵
2k+4
3
≤f(x1)+f(x2)<2,且
k+2
3
≤f(x3)<1,故
2k+4
3
≥1,∴-
1
2
≤k<1;
综上所述:-
1
2
≤k≤4.
故答案为:-
1
2
≤k≤4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式