如图,四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DF:FC=2:3,DH:HA=2:3.求证:

如图,四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DF:FC=2:3,DH:HA=2:3.求证:EF、GH、BD交于一点.... 如图,四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DF:FC=2:3,DH:HA=2:3.求证:EF、GH、BD交于一点. 展开
 我来答
我一直在爱你伭
2014-12-17 · TA获得超过334个赞
知道答主
回答量:102
采纳率:0%
帮助的人:133万
展开全部
证明:连接GE、HF,
∵E、G分别为BC、AB的中点,
∴GE∥AC.
又∵DF:FC=2:3,DH:HA=2:3,
∴HF∥AC.∴GE∥HF.
故G、E、F、H四点共面.
又∵EF与GH不能平行,
∴EF与GH相交,设交点为O.
则O∈面ABD,O∈面BCD,而平面ABD∩平面BCD=BD.∴EF、GH、BD交于一点.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式