如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,
如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是______....
如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是______.
展开
展开全部
∵∠C=90°,BC=6cm,AC=8cm, ∴AB=10cm, ∵将△BCD沿BD折叠,使点C落在AB边的C′点, ∴△BCD≌△BC′D, ∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm, ∴AC′=AB-BC′=4cm, 设DC=xcm,则AD=(8-x)cm, 在Rt△ADC′中,AD 2 =AC′ 2 +C′D 2 , 即(8-x) 2 =x 2 +4 2 ,解得x=3, ∵∠AC′D=90°, ∴△ADC′的面积═
故答案为6cm 2 . |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询