定理是一个正确的命题,数学中,定理的真实性,是根据公理或其他已知正确的命题,经过逻辑论证推出的。
物理学中,定理是从定律(类似于数学中的公理)结合数学工具推导出来的。基本事实就是基本事实,并非所有的A都能进一步解释的。
相同点:基本事实与定理都是正确的观点。
不同点:定理的真实性是根据数学公理或别的已知正确的命题,经过逻辑论证推出的,基本事实只是一个正确的事实,不能进一步解释。
在数学里,定理是指在既有命题的基础上证明出来的命题,这些既有命题可以是别的定理,或者广为接受的陈述,比如公理。
数学定理的证明即是在形式系统下就该定理命题而作的一个推论过程。定理的证明通常被诠释为对其真实性的验证。
扩展资料:
经由可靠的论证(三段论、推理规则)由前提(原有的知识)导至结论(新的知识)的逻辑演绎方法,是由古希腊人发展出来的,并已成为了现代数学的核心原则。
经由可靠的论证(三段论、推理规则)由前提(原有的知识)导至结论(新的知识)的逻辑演绎方法,是由古希腊人发展出来的,并已成为了现代数学的核心原则。
除了重言式之外,没有任何事物可被推导,若没有任何事物被假定的话。公理即是导出特定一套演绎知识的基本假设。公理不证自明,而所有其他的断言(若谈论的是数学,则为定理)则都必须借助这些基本假设才能被证明。
然而,对数学知识的解释从古至今已不太一样,且最终“公理”这一词对今日的数学家眼中和在亚里斯多德和欧几里得眼中的意思也有了些许的不同。
参考资料来源:百度百科-公理
2017-02-08
基本事实就是基本事实——事实上,并非所有的A都能进一步解释的。
人们提出问题,通常的路子是:A(概念)是什么?用一种语言(数学的物理的科学的)揭示、解释A,并给A以清晰的界定——这就是对A“下定义”;然而,并非所有的概念都能用更简单、更基本的概念来解释的,有些概念本身就已经是最基本最简单了,如你问我“点是什么”?“时刻是什么?”,无他,我只能回答“点就是点,时刻就是时刻”,因此对于那些“A就是A”的概念,数学里面也叫做元概念,是其他符合概念的基本单位。
所谓的区别,就在于我们知道这些有何不一样,为了做到这一点,我们就下定义,作界说,做到了,就达到了目的。
定理:是一个正确的命题。