已知x,y,z是正实数,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥(x+y+z)/2
1.已知x,y,z是正实数,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥(x+y+z)/22.已知函数f(x)=x-3/2x^2,设0〈a1〈1/2...
1.已知x,y,z是正实数,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥(x+y+z)/2
2.已知函数f(x)=x-3/2x^2,设0〈a1〈1/2,an+1=f(an),n∈N*,证明:an〈1/(n+1)
附:an为数列! 展开
2.已知函数f(x)=x-3/2x^2,设0〈a1〈1/2,an+1=f(an),n∈N*,证明:an〈1/(n+1)
附:an为数列! 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询