初中数学问题
1个回答
展开全部
解:(1)直线CE与⊙O相切
证明如下:
∵四边形ABCD为矩形
∴BC‖AD,∠ACB=∠DAC
又∵∠ACB=∠DCE
∴∠DAC=∠DCE
连接0E,则∠DAC=∠AEO=∠DCE
∵∠DCE+∠DEC=90°
∴∠AEO+∠DEC=90°
∴∠DEC=90°
∴CE与⊙O相切
(2)令⊙O的半径为X,
∵tan∠ACB=√2/2
,BC=2
∴AB=BCtan∠ACB=√2
,AC=
√6
又∵∠ACB=∠CAD
∵tan∠CAD=
√2/2
∴AE=Xcos∠CDA=√6/3*2X,EF=Xsin∠CDA=√3/3*2X
在Rt△CDE中,DE=AD-AE=2-√6/3*2X,
CE^2=
DE^2+CD^2=(2-√6/3*2X)^2+(√2)^2
连接OE,则在Rt△COE中,
CO^2=CE^2+EO^2,EO=X,CO=AC-AO=√6-X,
【√6-X】^2=(2-√6/3*2X)^2+(√2)^2+X^2
解得:
X=√6/4.
证明如下:
∵四边形ABCD为矩形
∴BC‖AD,∠ACB=∠DAC
又∵∠ACB=∠DCE
∴∠DAC=∠DCE
连接0E,则∠DAC=∠AEO=∠DCE
∵∠DCE+∠DEC=90°
∴∠AEO+∠DEC=90°
∴∠DEC=90°
∴CE与⊙O相切
(2)令⊙O的半径为X,
∵tan∠ACB=√2/2
,BC=2
∴AB=BCtan∠ACB=√2
,AC=
√6
又∵∠ACB=∠CAD
∵tan∠CAD=
√2/2
∴AE=Xcos∠CDA=√6/3*2X,EF=Xsin∠CDA=√3/3*2X
在Rt△CDE中,DE=AD-AE=2-√6/3*2X,
CE^2=
DE^2+CD^2=(2-√6/3*2X)^2+(√2)^2
连接OE,则在Rt△COE中,
CO^2=CE^2+EO^2,EO=X,CO=AC-AO=√6-X,
【√6-X】^2=(2-√6/3*2X)^2+(√2)^2+X^2
解得:
X=√6/4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询