泰勒展开式是什么?
展开全部
泰勒展开式定义为若函数f(x) 在包含x0的某个开区间(a,b)上具有(n+1)阶的导数,那么对于任一x∈(a,b),有f(x)=f(x0)/0!+f'(x0)/1!*(x-x0)+f''(x0)/2!*((x-x0))^2+f(n)(x0)/n!*(x-x0)^n+Rn(x)。
其中,Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),此处的ξ 为x0 与x 之间的某个值。
扩展资料:
泰勒展开式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。利用泰勒展开式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。
泰勒展开式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询