计算二重积分.∫∫(x+y)/(x^2+y^2)dσ,D:x^2+y^2≤1及x+y≥1所确定.呵呵,
1个回答
展开全部
运用极坐标代换
x=rcosa,y=rsina,a[0,π/2],r[0,1],dxdy=rdrda
x+y=rcosa+rsina=√2rsin(a+π/4)
∫∫(x+y)/(x^2+y^2)dσ
=∫[0,π/2]∫[0,1]√2rsin(a+π/4)/r^2*rdrda
=∫[0,π/2]√2sin(a+π/4)da
=-cos(a+π/4)[0,π/2]
=√2/2+1
x=rcosa,y=rsina,a[0,π/2],r[0,1],dxdy=rdrda
x+y=rcosa+rsina=√2rsin(a+π/4)
∫∫(x+y)/(x^2+y^2)dσ
=∫[0,π/2]∫[0,1]√2rsin(a+π/4)/r^2*rdrda
=∫[0,π/2]√2sin(a+π/4)da
=-cos(a+π/4)[0,π/2]
=√2/2+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询