椭圆的准线方程是怎么来的
1个回答
展开全部
设焦点在x轴上的椭圆:
x^2/a^2+y^2/b^2=1
B(0,b)设B到右准线的垂线段BH,根据椭圆的第二定义;|BF2|/|BH|=e=c/a
而|BF2|=a
即:
a/|BH|=c/a==>|BH|=a^2/c
右准线方程:
x=a^2/c,左准线与右准线对称,所以两准线方程为:
x=±a^2/c
x^2/a^2+y^2/b^2=1
B(0,b)设B到右准线的垂线段BH,根据椭圆的第二定义;|BF2|/|BH|=e=c/a
而|BF2|=a
即:
a/|BH|=c/a==>|BH|=a^2/c
右准线方程:
x=a^2/c,左准线与右准线对称,所以两准线方程为:
x=±a^2/c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |