函数极限和导数的关系?

 我来答
哆啦休闲日记
高粉答主

2023-07-03 · 关注我不会让你失望
知道小有建树答主
回答量:2479
采纳率:100%
帮助的人:38.8万
展开全部

关系如下:

如果lim f(x)=0,根据极限定义,对任何e>0,存在k使得对任意x>k,0-e<f(x)<0+e.于是对任何e>0存在实数k使得对任意x>k,|f(x)|<e,即0-e<|f(x)|<0+e,由定义,lim |f(x)|=0. 因此,limf(x)=0 ==> lim|f(x)|=0, 逆反命题为lim|f(x)|不等于0,则limf(x)不等于0,原命题获证。

反过来,如果lim |f(x)|=0,则根据极限定义,对任何e>0,存在k使得对任意x>k,0-e<|f(x)|<0+e,即|f(x)|<e.于是对任何e>0存在实数k使得对任意x>k,-e<f(x)<e.因此limf(x)=0.所以,limf(x)=0是lim|f(x)|=0的充要条件。

如果是其他数值则不一定。比如lim|f(x)|=3,则limf(x)可能是3或-3,甚至可能不存在(比如数列-3,3,-3,3,-3,3,....)。

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式