函数f(x)在点x=0不可导怎么判断呢?
1个回答
展开全部
函数不可导有以下条件
1、函数在该点不连续,且该点是函数的第二类间断点。如y=tanx,在x=π/2处不可导
2、函数在该点连续,但在该点的左右导数不相等。如y=|x|,在x=0处连续,在x处的左导数为-1,右导数为1,左右导数不相等,函数在x=0不可导。
间断点是指:在非连续函数y=f(x)中某点处xo处有中断现象,那么,xo就称为函数的不连续点。
间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。左右极限存在且相等是可去间断点,左右极限存在且不相等才是跳跃间断点。
扩展资料:
如果函数f(x)有下列情形之一:
(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-);
(2)函数f(x)在点x0的左右极限中至少有一个不存在;
(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询