已知函数f(x)=x²+ax+b-3(x属于r)恒过点(2,0)。则a²+b²的最小值为多少。求过
已知函数f(x)=x²+ax+b-3(x属于r)恒过点(2,0)。则a²+b²的最小值为多少。求过程谢谢...
已知函数f(x)=x²+ax+b-3(x属于r)恒过点(2,0)。则a²+b²的最小值为多少。求过程谢谢
展开
展开全部
函数f(x)=x²+ax+b-3(x属于r)恒过点(2,0) f(2)=0 4+2a+b-3=0 2a+b+1=0 b=-1-2a
a^2+b^2=a^2+(-1-2a)^2=a^2+4a^2+4a+1=5a^2+4a+1=5(a^2+4a/5+1/5)=5[(a+2/5)^2-4/25+1/5]=5[(a+2/5)^2+1/25]=5(a+2/5)^2+1>=1 最小值为1此时a=-2/5
a^2+b^2=a^2+(-1-2a)^2=a^2+4a^2+4a+1=5a^2+4a+1=5(a^2+4a/5+1/5)=5[(a+2/5)^2-4/25+1/5]=5[(a+2/5)^2+1/25]=5(a+2/5)^2+1>=1 最小值为1此时a=-2/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由已知得2a+b+1=0,b=-1-2a a,b∈R a²+b²=a²+(1+2a)²=5a²+4a+1=5(a+2/5)²+1/5 其最小值为1/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询