如何用OpenCV自带的adaboost程序训练并检测目标
1个回答
2016-04-15
展开全部
每个Haar特征对应看一个弱分类器,但并不是任伺一个Haar特征都能较好的描述人脸灰度分布的某一特点,如何从大量的Haar特征中挑选出最优的Haar特征并制作成分类器用于人脸检测,这是AdaBoost算法训练过程所要解决的关键问题。
Paul Viola和Michael Jones于2001年将Adaboost算法应用于人脸检测中,其基本思想是针对不同的训练集训练同一个分类器(弱分类器),然后把这些不同训练集上的得到的分类器联合起来,构成一个最终的强分类器。Adaboost 算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,对于h1 分类错误的样本,加大其对应的权重; 而对于分类正确的样本, 降低其权重, 这样分错的样本就被突出出来,从而得到一个新的样本分布 U2 。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器 h2 。依次类推,经过 T 次循环,得到 T 个弱分类器,把这 T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。
训练系统总体框架,由“ 训练部分”和 “ 补充部分”构成。依据系统框架,本文的训练系统可分为以下几个模块:
(1)以样本集为输入,在给定的矩形特征原型下,计算并获得矩形特征集;
(2)以特征集为输入,根据给定的弱学习算法,确定闽值,将特征与弱分类器一一对应,获得弱分类器集;
(3)以弱分类器集为输入, 在训练检出率和误判率限制下, 使用A d a B o o s t 算法
挑选最优的弱分类器构成强分类器;
(4)以强分类器集为输入,将其组合为级联分类器;
(5)以非人脸图片集为输入,组合强分类器为临时的级联分类器,筛选并补充
非人脸样本。
Paul Viola和Michael Jones于2001年将Adaboost算法应用于人脸检测中,其基本思想是针对不同的训练集训练同一个分类器(弱分类器),然后把这些不同训练集上的得到的分类器联合起来,构成一个最终的强分类器。Adaboost 算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,对于h1 分类错误的样本,加大其对应的权重; 而对于分类正确的样本, 降低其权重, 这样分错的样本就被突出出来,从而得到一个新的样本分布 U2 。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器 h2 。依次类推,经过 T 次循环,得到 T 个弱分类器,把这 T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。
训练系统总体框架,由“ 训练部分”和 “ 补充部分”构成。依据系统框架,本文的训练系统可分为以下几个模块:
(1)以样本集为输入,在给定的矩形特征原型下,计算并获得矩形特征集;
(2)以特征集为输入,根据给定的弱学习算法,确定闽值,将特征与弱分类器一一对应,获得弱分类器集;
(3)以弱分类器集为输入, 在训练检出率和误判率限制下, 使用A d a B o o s t 算法
挑选最优的弱分类器构成强分类器;
(4)以强分类器集为输入,将其组合为级联分类器;
(5)以非人脸图片集为输入,组合强分类器为临时的级联分类器,筛选并补充
非人脸样本。
东莞大凡
2024-08-07 广告
2024-08-07 广告
OpenCV标定板是东莞市大凡光学科技有限公司在相机标定中常用的工具。它通常由黑白格点按一定规则排列在平面上组成,如棋盘格或圆形格等。在相机标定时,将标定板置于不同位置和姿态下拍摄图像,利用OpenCV库中的函数检测标定板上的角点或圆心,进...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询